
Firstly, the possibility of estimating the error in determining the heat-flux density by 
means of the analytic expressions (15), (17), (19), which affords a possibility of construct- 
ing heat meters with given accuracy. Secondly, simple computational formulas permitting 
the realization of continuous measurement of nonstationary heat fluxes during experiment by 
using analog facilities. 

NOTATION 
i x 0 L--x 0 t x 

ss Is p h =  dx Q ~ ) i ( x ) c l x ; p h = .  dx . Q ~ k ) _ l ( L - - x ) d x ,  weighting factors; g~=AT(~); g 2 = ~  ~ t ( x ,  ~) 
0 0 L L ,. 0 

dx; ~Yx, error in measuring AT(T); ~y2' error in determining Y2; a, thermal diffusivity co- 
efficient; oo, methodological error in determining Y2; ok, error in measuring ~(T); e, error 
in determining the derivative due to piecewise-linear interpolation; and Od, error in ap- 
proximate analog differentiation. 
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DERIVING THE THERMAL CONTACT RESISTANCE 

FROM THE SOLUTION OF THE INVERSE HEAT-CONDUCTION 

PROBLEM 

E. A. Artyukhin and A. V. Nenarokomov UDC 536.24.02 

The construction of an iterative computational algorithm is considered, and results 
of mathematical modeling of the solution of the coefficient inverse problem of heat 
conduction by deriving the dependence of the thermal contact resistance on the tem- 
perature are given. 

Consider the process of heat conduction in a two-layer infinite plate with known thermo- 
physical characteristics of the layers and specified initial and boundary conditions of the 
first kind. 

In real situations, there is contact heat transfer between the layers at the boundary. 
This means that, in numerical modeling of the heat-conduction process in the system, the 
energy-matching relations at the boundary between the layers must be considered, taking ac- 
count of contact thermal resistance [i]. It is assumed that the heat conduction in each layer 
is described by a homogeneous heat-conductlon equation. Then the mathematical formulation 
of the problem of heat conduction in a two-layer plate takes the following form for the given 
case 

4 Translated from inzhenerno-FizicheskiiZhurnal, Vol. 46, No. 4, pp. 677-682, April, 1984--? 
Original article submitted January 3, 1983. 
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Ct(T) OT~(x,'c) 0 ( OTt(x,'~)) (i) 
aT = Ox ~, (7") Ox , X,  < x < Xt+~, 0 < �9 < ~,., 

i = 1 ,  2, 

Tt(x, 0 ) =  ~(x),  Xl<x<X~+~, i =  1, 2, (2) 

T1 (Xl, x) = ql (*), (3) 

(7) a7~ (x,, ~) = ~,(r) aT, (X,, ~), (4) 
0x ax 

_s T) R(T)=T~(X,, x)--T,(X,, x), (5) 
Ox 

T,(X3, ~) = %(~), (6) 

where Xl is the coordinate of the beginning of the two-layer plate (Xx = 0); X2 is the thick- 
ness of the first layer; X3 is the plate thickness. 

In practical thermophysical investigations, the case when the contact thermal resistance 
is specified with very low accuracy or is completely unknown often arises. Therefore, a suf- 
ficiently accurate determination of the thermal contact resistance is necessary, since at 
large heat-flux densities the temperature difference in the contact region may be tens or 
even hundreds of degrees [i]. 

This problem may be regarded as an inverse heat-conduction problem: it is required to 
identify (estimate or refine) the characteristic R(T) of the mathematical model in Eqs. (i)- 
(6) from the results of observations in a system in conditions of real functioning. Observa- 
tion is understood to mean the measurement of the given system's output parameters in experi- 
mental conditions, i.e., the determination of the system's reaction to some thermal perturba- 
tion. 

In practical applications, it is simpler to make temperature measurements; therefore the 
case when it is temperature measurements which are made will be considered. Thus, it is 
necessary to determine the function R(T) in the mathematical model in Eqs. (1)-(6) from the 
results of measuring the temperature at a series of internal points of a two-layer plate. 
Note that a series of factors influences the thermal contact resistance [i, 2]. In the 
present work, the dependence of this characteristic onthe temperature alone is considered. 
The influence of other factors may be investigated by the well-known traditional methods of 
[2]. 

Questions of the existence and uniqueness of a linear inverse problem of this kind for 
the model of a two-layer plate were analyzed in [3]. The dependence R(T) is most expediently 
determined using the apparatus of coefficient inverse problems or identification problems. 
In this approach, the desired dependence may be obtained directly from the data of a single 
experiment over a broad temperature range. 

The choice of the desired characteristics is made on the basis of minimizing a particular 
criterion: the mean square deviation of the temperatures calculated from the specific mathe- 
matical model at the temperature-sensor positions from the experimental values. 

The following notation is now introduced: mi is the number of temperature sensors in 
the i-th layer (i = i, 2); Yi,j is the coordinate of the position of the J-th temperature 
sensor (J = i, 2, ..., mi) in the i-th layer. In this notation, the inverse problem is 
formulated as follows: determine the functions R(T) and Ti(x, T), i = i, 2, from the condi- 
tion of a minimum of the functional 

2 " i  ~,n (7) 

i = l  i = l  0 

where f i t . i (T )  i s  t he  measured t ime dependence of  the  t empera tu re  a t  the  po in t  wi th  c o o r d i n a t e s  
Y i , j ,  wh i l e  the  f u n c t i o n  T i ( x ,  T) s a t i s f i e s  the  boundary problem in  Eqs. ( 1 ) - ( 6 ) .  Using the  
approach deve loped  in  [4 ] ,  the  i t e r a t i v e  a lgo r i t hm fo r  the  s o l u t i o n  of  the  fo rmula ted  o p t i m i -  
z a t i o n  problem i s  c o n s t r u c t e d .  To t h i s  end,  formulas  f o r  the  t a r g e t - f u n c t i o n a l  g r a d i e n t  a r e  
obtained. 

496 



It is assumed that the function R(T) takes a small increment AR. Then the temperature 
Ti(x, x), i = i, 2, takes a small increment 9~(x, ~), i= i, 2. It may be shown that the func- 
tions @~{x, T) satlsfy the following boundary problem 

~.~ (T) Oz~ (x, x) OT~ (x, x) O}, (T) O~i (x, x) + = ~2-  :~ 
Ox z Ox OT Ox 

X 
OT"Z Ox 

Xi+~, i = 1,2, 0 < Z < x,,, 

~ (x, 0) --- 0, X~ < x < X~+,, i - 1,2, 

% (o, "0 -- o, 

C~ (T) 0~,~ (x, "0 
O'c 

+ ( OZT~ (x, "0 O~.i (T_.___! ( OT~ (x, x) 
" '  Ox ~ OT + Ox 

OC~ (T) ) ~i (x, % Xi < x < 
• OT 

(r)ael _ ,  aL~(T) OT2(X,, 
(Xox,, x~ + 0Za(T)ox OTx(X"ox "0 el(X,, "~)---/,(T) OO,(X,,ox ~;) + aT Ox x)-,~s(X~, x), 

(8) 

(9) 
(1o) 
(n) 

R(T)Lx(T)-~L-x~ (X~,'c) + ( ~'~(T)oT~(x~'ax ~) aR(T)aT + R(T) O~.~(T._.~)aT • 

aT~ (X,, "0 07x (Xs, x) ~), (X~, x) + ~.1 (T) AR + 01 (X2, ~) - 
• 0x 0x 

-- ~, (X~, ,) = 0; , (12) 

%(X~, ~) = 0. (13) 

The linear part of the increment in the target functional in Eq, (7) takes the form 
2 m t  "Or,, 

A s = 2  j" (14) 
i=I j = 0  0 

The boundary problem conjugate with Eqs. (1)-(6) is now introduced into consideration 

- -  C, (T) O~;i,~ (x, x) : ~i (T) 0 ~ t ' '  (x, ~) 0 ~ �9 < % .  Y~d-t < x < Y~j, 
" 0% 0x 2 ' 

j == 1",2 . . . . .  mt+,, i-=- 1,2, (15)  

r " ~ ) =  O~ j = 1,2 . . . .  , m~ + 1, l = 1,2, (16)  

~la(X,, ~) ---- O, (17)  

~,j(Yi,J, "~) = ~i,j+l(Y,,~, w), ] =  1,2 . . . . .  mi, i =  1,2, (18)  

a~h,j(Yi,j, w) O~,~+~(Yid, x) (19) 
----- j = 1,2 . . . . .  mr, i -  1,2, 

Ox Ox ' 

a,,,~(x~, x) = ,~,~,+,(x,, ~)--,~,,(x~, ~), (20) 
-- ~ (T) R (T) -, Ox " 

--Z~(D~(T) a,,,,.,+~(x~,ax ~) = \{' 1 + ~(r~ aT~(X~, . . . .  ~) O~(r~ :~ (,,,,.,+,(X~, ~)- ~,I (X~, ~)), (21) Ox OT 

~,ra,+,(X~, x) ~- O. (22)  

Using Eqs. (8)-(13) and (15)-(22), the expressions for the linear part of the increment 
in the functional in Eq. (16) may be transformed to give 

Jx['m AR~a(T)~,s(T) O~;s,a(X,, x) OTx(X~, x) dx. (23) AJ 
o Ox Ox 

The region of definition of the function R(T) is not known a priori, and therefore it 
will be sought in the interval D = (Tmin, Tmax) , which is realized in the plate and known in 
view of the homogeneity of Eq. (i) and the specified initial conditions and boundary condl- 
tions of the first kind [5]. The interval D is divided into Z equal sections and a grid is 
introduced 

,~ = {T, ,  = Train + k A T ,  k = - -  2 ,  - - 1  . . . .  , t + 3; A T  = (Tma,,  - -  T , . l . J / O .  
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The unknown function is approximated in the form of a B spline over the grid [6] 
l+l 

R (T) = ~ rkBk (T), 
k=--!  

where Bk(T) is taken, so as to be specific, as a cubic Bo spline [6]. Then, using Eq. (23), 
the formula for the components of the gradient vector in Eq. (7) may be written in the form 

Jk = ~ [  %z (T) ~, (T) 0~2,, (Xg, ~) OTI(X~, ~) B~(T)d% 
Ox Ox 

k =--I,0 . . . . .  I + 1 .  (24) 

Knowing t h e  g r a d i e n t  o f  t h e  t a r g e t  f u n c t i o n a l ,  an  i t e r a t i v e  a l g o r i t h m  f o r  t h e  s o l u t i o n  o f  
the inverse problem may be constructed using the conjugate-gradient method [7] 

r~+ 1 = r~ -{- aph/~h, k = - -  1,0 . . . . .  l + 1, p : O, 1 . . . . .  

where 

(25) 

= - + = o; = ( J i  - 

h = - - I  
l +  1 

p = 1,2 . . . . .  

k=-- I  

The coefficient ap determines the value of the step in the p-th fteration and is calcu- 
lated from the condition min J(~P + apGP), where ~p is a vector of dlmensionality Z + 3 cor- 
responding to the values of the coefficients in the approximation in Eq.(24) in the p-th 
iteration and ~P is a vector of dimensionality Z + 3, the components of which are gk in Eq. 
(25). 

The value of the linear estimate Up may be obtained in explicit form (see [4, 8], for 
example) 

2 mf 

i=1 P=I 

j (r~ (I%, " 0 -  f.j('O)o~ (Y'~,j, "0 d:~ 
0 

.[ (0~ ( r . j ,  ~))~ dr 
0 

(26) 

The iterative process is constructed as follows. The initial approximation of the de- 
sired parameters is constructed, and the problem in Eqs. (1)-(6) is solved. In the appro- 
priate approximation of the temperature field, after solving the conjugate problem in Eqs. 
(15)-(22), the gradient of the target functional is calculated from Eq. (24). Then, after 
solving the problem for the increment in Eqs. (8)-(13), an estimate of the depth of descent 
in ap is made, and a new approximation is found from Eq. (25). The process is then repeated. 
It is expedient to arrange for exit from the iteratlve process to occur on the basis of the 

2 mi im 
discrepancy, i,e., when the condition J~62 is satisfied, where ~= ~r 

i l l  i = l  0 

t h e  i n t e g r a l  e r r o r  i n  s p e c i f y i n g  t h e  t e m p e r a t u r e  a t  t h e  t e m p e r a t u r e - s e n s o r  s i t e s ;  a t , j ( x )  i s  
t h e  mean s q u a r e  d e v i a t i o n  o f  t h e  i n p u t  t e m p e r a t u r e s .  

T h i s  a l g o r i t h m  was r e a l i z e d  i n  t h e  fo rm o f  a p r o g r a m  f o r  t h e  EC c o m p u t e r ,  and u sed  i n  
c a l c u l a t i n g  a s e r i e s  o f  m e t h o d o l o g i c a l  e x a m p l e s .  

C o n s i d e r  a p l a t e  c o n s i s t i n g  o f  two i d e n t i c a l  l a y e r s  w i t h  a t e m p e r a t u r e  s e n s o r  i n  each  
l a y e r .  The b o u n d a r y  t e m p e r a t u r e s  and i n p u t  d a t a  f o r  t h e  s o l u t i o n  o f  t h e  i n v e r s e  p r o b l e m  a r e  
t a k e n  i n  t h e  fo rm o f  t h e  t e m p e r a t u r e s  o b t a i n e d  f rom t h e  s o l u t i o n  o f  t h e  d i r e c t  h e a t - c o n d u c -  
t i o n  p r o b l e m ,  w i t h  b o u n d a r y  c o n d i t i o n s  o f  t h e  s econd  k i n d  and a s p e c i f i e d  t h e r m a l  r e s i s t a n c e  
R ( T )  ffi T : .  The o t h e r  i n i t i a l  d a t a  a r e  t a k e n  i n  t h e  fo rm 

ql (x) = l, q~ (x) = 0, C1 (r )  = C2 (T) = 1, ~ ( r )  = ~ (T) = 1, 

X~ = 0.5, X3 ---- 1; YI., ---- 0.25, Y2: = 0,75, T --= (x, 0) = 0. 
The d e s i r e d  f u n c t i o n  R(T) i s  a p p r o x i m a t e d  u s i n g  s e v e n  d i v i s i o n s  o f  t h e  t e m p e r a t u r e  i n -  

t e r v a l  (Train, Tmax)-  The c a l c u l a t i o n s  a r e  p e r f o r m e d  on a d i f f e r e n c e  g r i d  nx • nx = 20 x 20. 
I n  t h e  g i v e n  m e t h o d o l o g i c a l  e x a m p l e ,  t h e  i n v e r s e  p r o b l e m  was s o l v e d  f o r  " a c c u r a t e "  d a t a  o b -  
t a i n e d  f r o m  t h e  s o l u t i o n  o f  t h e  b o u n d a r y  p r o b l e m  i n  Eqs .  ( 1 ) - ( 6 ) .  The i n t e g r a l  e r r o r  o f  t h e  
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Fig. i. Deriving the 
thermal contact re- 
sistance from the so- 
lution of the inverse 
heat-conduction problem: 
i) specified dependence; 
2) derived values (~ = 
T/Tmax; R = R/Rmax). 

temperature measurements was taken to be zero, and iteration was ended when the solution ob- 
tained in two successive intervals was the same. The initial approximation of the thermal 
resistance was taken to be constant: Ro = 0.I. 

The results of mathematical modeling show (Fig. i) the possibility of using the pro- 
posed algorithm for analyzing and interpreting real experimental data. 

NOTATION 

T, temperature; C(T), bulk specific heat; %(T), thermal con4uctivity; x, coordinate;'z, 
time; Tm, length of process; R(T) contact thermal resistance; fi,j(T), input temperatures; 
@(x,z) , temperature increment; rk, k = --i, 0, o.., m + i, parameters in the spline approxi- 
mation of the function R(T); B(T), B spline; a, 8, parameters of the conjugate-gradient 

�9 �9 �9 2 

method; J', gradient of the target functlonal; ~(x, z), con3uga~e varmable; ~ , integral er- 
ror of input data; p, number of iterations; q(T), specific heat flux; ~(~), temperature dis- 
tribution function at initial instant. Indices: max, mln, maximum and minimum values, re- 
spectively. 
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